

### Nanotechnology makes brighter LED's

### Michael P.C. Watts

www.impattern.com



# Outline

- •Why are LED's such a big deal ?
  - -Brightness; lumens per watt & lumens per dollar
  - -Applications
- •How does nanotechnology help ?
  - -Light extraction
  - -Light creation
- •How to implement nanotechnology cost effectively ?
  - -Sub 100 nm features at < 1 c per device
  - -Limited align and defects
  - -Ideal imprint application
  - -Which companies are poised to make an impact ?

# Why are LED's such a big deal ?

### Light usage

- \$230 B world wide - 30% savings possible, > 300 power plants + fuel.....

### Light efficiency cost life

- Max possible 250 lm/W
- Tungsten 16 lm/W <0.01 \$W 1,000 hrs
- Flourescent 60 lm/W
- LED 50-80 lm/W 2-5 \$/W 50,000 hrs\*

\*Depends a great deal on keeping it cool !

8,000 hrs

Total cost of ownership works today (energy + replacements) – but we are not good at making long term financial decisions !!

# Applications

- High replacement cost, leverage life
  - Traffic lights
  - Commercial lighting
- Leverage design
  - Car lights
- Low power, leverage efficiency
  - Cell phone display
- What's next
  - Home, leverage design & efficiency
  - Projection displays leverage brightness of LED with photonic crystals
  - FPD, leverage color control







#### RGB Edge Lighting LED's for Flat Panel Illumination



15" Diagonal Screen 2500 lumen 120W 18,000 nits LEDs 24 Green 8 Blue 32 Red



# How does nanotechnology help?

- The problem and conventional solutions
- Light extraction
  - Photonic crystals + thin devices
- Light creation
  - + reflectors + webbed conductors + patterned growth

### An LED



# Light trapping

GaN layer has a high refractive index, a limited angle of light leaves, the rest undergoes Total Internal Reflection

Multiple bounces "interfere"

Creates standing waves - waveguide modes

62% of light is trapped in GaN layer 11% trapped in substrate



### **Conventional Solutions**

- Encapsulation

   traditional



- Faceting
  - Very expensive



- Roughening + encapsulation
  - Industry standard



### Patterned extraction



### Photonic Quasi Crystal optimizes beam shape and uniformity



Lumileds showed beam shaping experimentally Luminus Devices are selling product for projection displays



Mesophotonics showed beam shaping control in models



### PC control of extraction

- Roughened encapsulated devices have 30-40% extraction, consistent with 50-80 ln/W devices
- Encapsulated PQC 45% > roughening 35% or 1.25x improvement
- Thin device 80% > thick 45%
- Model matches experiment (carefully optimized examples)



eriment Model and experimental data showing control of the light distribution by the photonic crystal, from literature and Mesophotonics. Literature data "normalized" to a 3um thick GaN device. Effect of encapsulation on roughened devices scaled from PC.

### PC and thin devices



Model data for LED optimized at 3 um thick and then thinned. *Mesophotonics.* 

# Light creation – effect of adding a mirror



# Optimized thin (<0.5 um) devices



Regular lattice, pitch from 200 to 300 nm Regular lattice, varying fill factor Regular lattice, andomized pitch by 10% Pattern optimization Quasi crystals 57- 69% 57/60/54 % 70% 73-80% 83%

#### Luminus Devices Patent Specification

### Light creation

- Web of conductors
  - Control current distribution
  - Nichia have implemented
- Lateral overgrowth
  - Grow through holes patterned in substrate
  - Reported by all major suppliers





### Future device

- Grown by lateral overgrowth
- Mirror deposited
- Surface sub micron layer sliced off / thinned and flipped
- PQC patterned
- Extraction potential > 80%
- Reduced cost
  - Brighter than florescent, reduced heat sinking
  - All wafer level processing
  - Large die, fewer packages
  - Simple package
  - Processed in automated factory > 3" wafers

# How to implement nanotechnology cost effectively ?

- Requirements LED
  - Sub 100 nm features at < 1 c per device
  - Limited overlay 2-3 um
  - Redundant part not defect critical
  - Imperfect wafers
- Solutions
  - Optical horribly expensive (\$20M)
  - Electron beam expensive (\$5M) and slow
  - Imprint ideal application (\$1-2M)
- How does imprint work ?
- Which companies are poised to make an impact?

Integrated Circuit

50 c per device

20 nm overlay

1, 20 nm defect is lethal Perfect wafers

### Imprint module





a) EVG clean coat system



b) MII imprinter



c) Trion etcher



# Imprinting



# Making the mold



### Imprint on rough wafers



Non – conformal

- Flex wafer
  - Contact printer solution, not sufficient for LED wafers
- Flex thin hard mold; MII, Nanonex
  - Hard surface is cleanable, lowest cost of ownership
- Soft plastic, fragile mold
  - either need many working copies, highest cost - EVG
  - or have a "one use mold" a dual head imprinter – Obducat
- Mold or imprint must be monitored in all cases



Conformal - mold deforms



8 um flat wafer 9 nm uniform imprint *MII* 

# **Production imprint solutions**

- All production tools are in varying stages of development, all should be made to work.
- EVG
  - Supplies converted contact printer
  - > \$200 M in sales
  - "Production system available ARO"
  - Make your own soft working mold
- MII
  - Reported most performance data
  - Supplies thin hard molds, and supports master creation and detailed process applications
  - Production tool focus
  - Best throughput potential
  - Start up
- Nanonex
  - Dominates manual lab tools
  - "Production system available ARO"
  - No mold technology recommendation
  - Start up
- Obducat
  - Second manual lab tool supplier
  - Small public company
  - Developing first production "one use mold" system
  - Limited overlay from plastic film mold
- Numerous minor suppliers; Suss etc.



b) MII imprinter

### Process



To pattern over small length scale roughness need planarization







50 nm features – 100 nm height change *MII* 

### Rest of the module



### **Clean and Coat**

Requirements < 50 nm residual layer thickness on 150 nm planarization layer
< 10 particles per wafer greater than 100 nm
< 10 nm variation in thickness</li>
Small wafers

•Suppliers should meet these targets

•EVG

•Suss

•SSEC

•S-Cubed



Pre Post Pre Post Clean data from SSEC, < 8 particles post clean



Coat thickness data on a S-Cubed systems, < 5 nm variation

# Etch

Multiple etch steps

- 1. Residual layer
- 2. Planarization
- 3. Hard mask
- 4. GaN needs high density plasma

Suppliers of multichamber systems, support GaN etch on small wafers

Trion

Oerlikon (used to be Unaxis)



GaAs etch



c) Trion etcher

# Metrology

- Defects
  - The regular pattern makes defects much more visible
  - KLA patterned wafer Surfscan
  - KLA optical inspection
- Thickness < 50 nm
  - Spectrometry Metrosol (Austin TX)
  - Ellipsometry KLA, Nanometrics
- SEM
  - Phillips
  - Jeol
  - Hitachi
- Used equipment available in most cases

### Cost of ownership

- Price of systems and materials will tend to converge due to competition
- Mold life and cost to replicate will be the dominant cost differential between suppliers solutions.
- Imprint module COO is in the \$10-15 a wafer range 5,000-8,000 die per wafer

### Conclusions

- Nanopatterning poised to impact LED's
  - Luminus Devices have implemented PC on LED by imprint and you can buy a projector today !!
  - Photonic Quasi Crystals offer uniform light beam essential to avoid external optics
  - Photonic Crystals on Nanolayer devices have potential for 80% extraction
  - Web conductors
  - Overgrown epitaxy
- Imprint poised to enable manufacturing
  - 2 suppliers are developing production solutions MII, Obducat
  - 2 suppliers have committed to build to order EVG, Nanonex