Challenges of High Performance Polymer Nanocomposites

Ramanan Krishnamoorti

Department of Chemical Engineering University of Houston, Houston, TX 77204-4004

ramanan@uh.edu

Polymer Nanocomposites

- Introduce small amounts of Nanoparticles to achieve dramatic changes in
 - Mechanical, Thermal, Physical, Electrical and / or Chemical Properties
 - Minimal change in density of the polymer
 - Possibly Inexpensive
- Challenges:
 - Dispersion (Equilibrium; Kinetics; Processing)
 - Interface Control
 - Optimization & Pricing

Nanoparticles

Nanoparticles

- Silica Nanoparticles
- Silsequioxanes
- Carbon nanotubes
- Layered silicates
- Isotropic or Anisotropic
 - Usually possess Hierarchy of Structure

50 nm

- Functionalized or Pristine
 - Controls Thermodynamics
 - Might Compromise Properties

A New Paradigm or A Re-invention of Filled Polymers?

- Hierarchical morphology property correlations?
- Confined polymer behavior Different from thin film and coating technology?

New Issues:

- Preponderance of interface
- Diminishing volume fraction of 'bulk'
- Aspect ratio of constituents
- Dissimilar mechanical properties of matrix and filler
- Hierarchical morphology with more than one length scale

Morphological Scale

<u>"Macro"-composite</u> $d = 1 \, \mu m$

Vaia, R. A.; Wagner, H. D.

Modulus Enhancement

Continuum Halpin – Tsai Model

Influence of Aspect Ratio on Modulus

Reinforcement by SWNTs of PCL

Glass Transition Temperature

Mechanism of Dispersion

 Hydrogen bonding between surfactant and polymer and attractive interactions between surfactant and SWNT.

Difference FTIR Spectroscopy Carbonyl Stretch

Nanotechreistablishiment of Pavorable H-bondin

Crystallization in Oriented Nanocomposites

w/Hadjiev

Uniaxial Orientation

Crystallization in Oriented Nanocomposites

Uniaxial Orientation – Preservation of Orientation with repeated thermal cycling

Draw in Melt; Crystallize and Heat to Melt; Isothermal at 43 °C;

Elastomer Nanocomposites

w/Tour

Shape-Recovery IR Light

Current

0.3% CNT/elastomer composite Nanotechnology Colloquium, Nov 14, 2005

Role of Layered Silicates on O₂ Permeability

Alignment of Nanoparticles

Aligned Sample Prepared by large amplitude oscillatory shear.

Effect of Orientation on Permeability

Intrinsic flexibility of Clay Layers

Role of Anisotropy and Orientation on Permeability

Elastomer – Layered Nanoparticle Composites

Magadiite indicates an aspect ratio of > 500!

Dispersed Nanotubes in OLEDs (MEH-PPV)

In Collaboration with Randy Lee and Gobet Advincula at UH.

In – situ polymerization of MEH – PPV in DMF (using a modified Gilch Method)

Parekh B. P., Newaz S. S., Sanduja S. K., Ashraf A. Q., Krishnamoorti R., Lee T. R., "*The Use of DMF as Solvent Allows for the Facile Synthesis of Soluble Highly Cis MEH – PPV.*" Macromolecules, 37, 8883 – 8887 (2004)

OLED Characterization

OLED Characterization

EL vs. Time of OLED

The Challenges

PCL Nanocomposites

0

Challenge of Mechanical Reinforcement

This failure to enhance mechanical properties beyond the low concentration cases is generic to all nanocomposites prepared with SWNTs: (PCL, PPF, PS, & Epoxy)

These SWNTs perhaps Form domains at higher concentrations & the reinforcement mechanism is changed from individual tube to rope reinforcement

Conclusions

There are a few examples where nanoparticles at low concentrations can in fact exceed the expected "rule – of – mixtures" based properties.

► However, for instance, thermal conductivity remains elusive.

Can the limitation of concentration over which property enhancement can be achieved be overcome in a cost effective manner?

Thanks: Dr. Cynthia Mitchell, Dr. Jiaxiang Ren, Dr. Adriana Silva, Barbara Casanueva and Tirtha Chatterjee; Charlie Shi Prof. Emmanuel Giannelis, Prof. Wes Burghardt, Dr. Rich Vaia, Prof. Jim Tour, Prof. Mikos

Funding: NSF, NASA, ACS-PRF, ARL, ExxonMobil, Texas State ATP and Carbon Nanotechnologies Inc.,

